Anisotropic conductivities that cannot be detected
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Abstract. We construct anisotropic conductivities in dimension three
that give rise to the same voltage and current measurements at the boundary
of a body as a homogeneous isotropic conductivity. These conductivities are
non-zero but very small close to some surfaces inside the body.

1 Introduction

There has been much progress in recent years in understanding the isotropic
electrical impedance tomography (EIT) problem. However, in the case of
anisotropic conductivities, particularly in three dimensions, very little is un-
derstood. One of the difficulties is that one cannot determine an anisotropic
conductor of a medium uniquely by making current and voltage measure-
ments at the boundary of the medium. Namely, any smooth change of
variable (diffeomorphism) which fixes the boundary gives rise to the same
electrical measurements; we explain this below.

Let D C R" be a domain; we will mainly be interested in n = 2 or
n = 3. An anisotropic conductivity is defined by a symmetric, positive
definite matrix-valued function, o = (¢*(z)). In the absence of sources or
sinks, the potential u satisfies

0 i, 0
(V-aV)u jkEZI pvid (z) 57 0on D (1)
U|3D = fa

where f is the prescribed voltage on the boundary. The resulting voltage-
to-current (or Dirichlet-to-Neumann) map is then defined by
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Aa(f) = BU|0D (2)

where
ik ou
BU—ZVJO' Ak’ (3)
7,k=1
u is the solution of (1) and v = (v1,...,vy) is the unit normal vector of 9D.

The operator A, encodes all possible current and voltage measurements
made at the boundary of the body. The inverse problem is to determine o
from A,. Applying the divergence theorem, we have

8u ou
n= [ ot = [ apias @

J,k=1

where u solves (1) and dS denotes surface measure on 9D. Q,(f) represents
the power needed to maintain the potential f on dD. Note that, by (4),
knowing @), is equivalent with knowing A,. Now, if F : D — D, F =
(F1,...,F"), is a diffeomorphism with F|sp = Identity, then by making
the change of variables y = F(x) and denoting u = v o F~! in the first
integral in (4), we obtain

AF*U’ = Aaa
where

ok
8:c'1 ()™ (y) (5)
=t e=F~1(y)

(F*U)jk (y) = Z

det

is the “push-forward” of the conductivity ¢ by F. Thus, there is a large
(infinite-dimensional) class of conductivities which give rise to the same
electrical measurements at the boundary.

Notice that if ¢ is an isotropic conductivity, i.e., for some scalar function
v(z) > 0 we have

¥ (z) = ()oY, (6)
and if F' is a change of variables which is the identity at the boundary such
that F.o is also isotropic (which need not be the case in general), then
F is the identity. Therefore this obstruction is not present for isotropic
conductivities. In fact for isotropic conductivities, one has the following

global uniqueness result, proven in dimensions greater than or equal to three
in [SyU] and in dimension two in [Nal:



Theorem 1 Let D C R" be a bounded domain with smooth boundary. If

o andré two isotropic C?-conductivities in D C R™, which are strictly
positive and for which Ay = Az, then 5 — o

For further progress on this problem, see the surveys [CnIN], [U1],[U2], the
book [Is] and the recent article [GLU].

Returning to the case of anisotropic conductivities, we define o, to be
equivalent if, for some diffeomorphism F': D — D fixing the boundary, ; —

F,o asin (5). The relevant inverse problem is then whether two inequivalent
conductivities can have the same Dirichlet-to-Neumann map. This problem
has a geometric formulation that we will review in the next section. In
particular, given the invariance of the problem under changes of coordinates,
it is natural, for n > 3, to consider it on a Riemannian manifold (M, g),
where there is a direct correspondence between the Riemannian metric g
and the conductivity . In section 2 we reformulate the EIT problem in
geometric terms and also describe some positive results for the case that the
conductivity is bounded from below, that is,

col < [ij(ac)]?-’kzl <ciI, forsome cgy,c1 >0, (7)

where I denotes the n X n identity matrix. In section 3, we construct exam-
ples of inequivalent anisotropic conductivities that have the same Dirichlet-
to-Neumann map as isotropic conductivities. These conductivities do not
satisfy (7); in particular, they are arbitrarily small near a surface contained
in the body. We conclude the paper with a brief discussion in section 4 of
the implications of these examples.

2 Geometrical interpretation of EIT

Let us assume now that (M, g) is an n-dimensional Riemannian manifold
with smooth boundary 0M. The metric g is assumed to be symmetric
and positive definite. The invariant object analogous to the conductivity
equation (1) is the Laplace-Beltrami operator, which is given by

Agu= Y G7'?0;(G'? g7 du) (8)
J,k=1

where G = det(g;x), [gjx] = [¢’¥]7!. The Dirichlet-to-Neumann map is
defined by solving the Dirichlet problem



Agu=0 in M, (9)
ulanr = f.

The operator analogous to A, is then

n
i Ou
= QY2 gk 2
Ag(5) = G2 3 vig 5 lowr, (10)
J.k=1
with v = (v1,...,vy) the outward unit normal to 9M. In dimension three

or higher, the conductivity equation and the Riemannian metric are related
by

ol = det(g)?¢’*, or ¢'* = det(c)® (=2 gk, (11)

Moreover, Ay = A,, and Ay, = Ay, where 1*g denotes the pullback of the
metric g by a diffeomorphism of M fixing M [LeU].

In dimension two, (11) is not valid; in this case, the conductivity equation
can be reformulated as

Divy(B8Gradgu) =0 in M, (12)
ulonr = f

where 3 is the scalar function 8 = |det o|'/2, g = (gji) is equal to (o),
and Div, and Grady are the divergence and gradient operators with re-
spect to the Riemannian metric g. Thus we see that in two dimensions,
Laplace-Beltrami operators correspond only to those conductivity equations
for which det(o) = 1.

After one has solved the EIT problem for an abstract Riemannian man-
ifold, then one tries to embed the manifold (M, g) into a Euclidean space
F:(M,g) - D C R™ with a diffecomorphism F'.

For domains in two dimensions, Sylvester[Sy] showed, using special co-
ordinates called isothermal coordinates, that one can reduce the anisotropic
problem to the isotropic one; combining this with the result of Nachman[Na],
one obtains

Theorem 2 If ¢ and & are two C3-smooth anisotropic conductivities in
D C R? for which Ay = Az, then there is a diffeomorphism F : D — D,
Flop = Id such that 5z — F 4.



In a two-dimensional Riemannian manifold (M, g), the Laplace-Beltrami
operator is conformally invariant, i.e.,

1

BAQ (13)
for B(x) > 0 any smooth conformal factor. Thus, one can expect to recover
at most the conformal class of (M, g) from A,4. In fact, it was proven in [LU]

Apg =

Theorem 3 Assume that (M, g) is a compact two-dimensional Riemannian
manifold with boundary. Then A4 determines the conformal class of (M, g).

In dimensions n > 3, it was shown in [LU] and [LTU] that the following
holds:

Theorem 4 Assume that (M,qg) is a complete, real-analytic Riemannian
manifold with boundary. Then A, determines (M,g) up to isometry.

3 Counterexamples

In this section we do not assume that the uniforms bounds (7) are valid, as we
allow the conductivity to be degenerate on a surface. In the previous section
we showed that inverse conductivity problem can be solved in two steps:
First one constructs a Riemannian manifold and then embeds this manifold
to Euclidean space. To motivate our counterexample, let us consider the two-
dimensional manifold shown in Figure 3. When the bridge connecting the
two parts of the manifold gets smaller, the boundary measurements give less
information about the isolated part and in the limit no information can be
obtained inside the isolated area. When these manifolds are embedded in R?
(or similar 3-dimensional manifolds to R?) we should obtain conductivities
whose boundary measurements give no information about conductivity on
some parts of the domain.

Example 1la. To build a conductivity corresponding to the manifold
shown in Figure 3, let us consider set = B(0,2) that is a ball in R?
centered at the origin and having radius R. Let D = B(0,1), the ball of
radius 1.. The set  has two parts D and Q \ D.

Consider the map F : Q\ {0} — Q\ D given by

|z| z

Fiz—(—=—+1)

: (14)



Figure 1: A manifold that collapses to two parts when the width of the
bridge connecting two parts goes to zero.

This map takes points in B(0,1) \ 0 and enlarges them to points in the
ball B(0,3). Let v = 1 be the homogeneous conductivity in Q and define
o = F,v. In this way we obtain a conductivity in Q \ D. Then we extend
the metric o smoothly as a Riemannian metric to D.

Next we consider these conductivities in the standard polar coordinates
of 2\ {0} that are denoted by (r,¢,0) € Ry x (—m,m) x (0,7). Now the
the metric tensor g and the corresponding conductivity o, are related by
oy = |det g|1/29jk. Let g be the metric corresponding to v and g be the
metric corresponding to . Then in polar coordinates we see that g and

correspond to the matrices

1 0 0
g=1| 0 r? 0 ,
0 0 r2sin6
r?sinf 0 0
v = 0 sin @ 0

0 0 (sing)~!

and the metrics g and o corresponding in the domain {1 < r < 2} to the



matrices

4 0 0
g=1 0 4(r—1)? 0 ,
0 0 4(r —1)%sin% 0
2(r —1)?sinf 0 0
o= 0 2sin@ 0
0 0 2(sinf) !

It can be shown that the equation

V-oVu(z) =0in Q
vloa = fo,
v € L*(Q)

has a unique solution defined in the sense of distributions and that the
Dirichlet-to-Neumann maps of ¢ and « coincide. So, the conductivity ¢
looks like a homogeneous media no matter what the conductivity is inside
D!

We note that in Example la. the conductivity is bounded from above
and the solution of (1) is unique and the Dirichlet-to-Neumann map is well
defined.

We construct a second counterexample corresponding to Figure 3. In

Figure 2: A manifold that collapses to two parts when the length of the
bridge connecting the two parts goes to infinity.

this situation, when the bridge connecting the two parts of the manifold
goes to infinity, the boundary measurements give less information about the
isolated part and in the limit no information can be obtained inside the



isolated area. Also similar 3-dimensional manifolds can be embedded into
R3 to obtain counterexamples.

Example 1b. To build a conductivity corresponding to the manifold
shown in Figure 3, let us consider again the sets @ = B(0,2) and D =
B(0,1).

In polar coordinates we define the metric g and the conductivity ¢ in
the domain {1 < r < 2} by the matrices

(r—1"2%2 0 0

9= 0 p2 0 )
0 0 p?sin?é
(r —1)p%siné 0 0
o= 0 (r—1)"'siné 0
0 0 (r—1)"lsin '@

where p > 0 is a constant Thus, in 2 \ D the metric is the product metric
on R} x SZ where Sg is a 2-sphere with radius p. Now we extend the metric
g arbitrarily to €. It can be shown that in the domain €\ D the equation

V-oVo(z) =0in Q\ D
vloa = fo,

v e L®(Q\ D)

has a unique solution.

Also, when p is small enough, we can extend the definition of v(x) to the
whole domain Q by defining it as a constant ¢y = lim,_,g9p v(z) in D. Then
the obtained function v(z) is a solution of the boundary value problem

V-oVu(z) =0 in Q
v|ae = fo,
v € L®(Q)

in the sense of distributions. In this case case the boundary measurements
would not give information about the metric inside D.

4 Discussion

We emphasize that in the above counterexamples the conductivity tensor is
not bounded below. However, in practice many objects are modeled to be



perfectly insulating, which correspond in mathematical terms to zero con-
ductivity. This means of course that the conductivity is so small that it can
be modeled to be zero when compared to real objects with measurement
precision. In particular, in impedance tomography, an ill-posed, the mea-
surement precision is quite poor. Thus even reasonably low conductivity
materials, in particular those that are located far from measurement elec-
trodes, may give rise to measurements similar to perfectly insulating materi-
als. The counterexamples presented in this paper might give an explanation
of effects that may be seen in practical measurement configurations. In par-
ticular, for applications of EIT, very roughly speaking, we can consider a
case where in a patient’s body there is a cancerous tumor that is covered
with low conductivity, anisotropic tissue. In this case, it is possible that the
tumor may appear in measurements to be healthy tissue.
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